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Abstract. In this paper, we propose a goal-directed navigation system
consisting of two planning strategies that both rely on vision but work
on different scales. The first one works on a global scale and is respon-
sible for generating spatial trajectories leading to the neighboring area
of the target. It is a biologically inspired neural planning and navigation
model involving learned representations of place and head-direction (HD)
cells, where a planning network is trained to predict the neural activi-
ties of these cell representations given selected action signals. Recursive
prediction and optimization of the continuous action signals generates
goal-directed activation sequences, in which states and action spaces are
represented by the population of place-, HD- and motor neuron activ-
ities. To compensate the remaining error from this look-ahead model-
based planning, a second planning strategy relies on visual recognition
and performs target-driven reaching on a local scale so that the robot can
reach the target with a finer accuracy. Experimental results show that
through combining these two planning strategies the robot can precisely
navigate to a distant target.
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1 Introduction

Studies in neuroscience have revealed that animals’ spatial cognition and plan-
ning behaviors during navigation involve certain types of location- and direction-
sensitive cells in the hippocampus, which support an animal’s sense of place and
direction [1][2]. More recent studies suggest that these spatially related firing
activities also underlie animals’ behavioral decisions [3].

Considering existing approaches for modeling hippocampal cells, most of
them just focus on how to develop the location- or direction-related firing pat-
terns while only few care about the computational principle underlying the for-
mation of these firing activities [4]. Slow feature analysis (SFA) [5] tries to explain
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this problem by an unsupervised learning algorithm that extracts slowly varying
features from fast-changing source signals based on the slowness principle. In
our previous work, place- and HD cells were simultaneously learned from visual
inputs using a modified SFA learning algorithm which can develop separated
populations of place and HD cell types by restricting their learning to separate
phases of spatial exploration [6]. However there remains a question of how to
use the metric information hidden in these cell activities, which are obtained by
unsupervised learning, to support a navigation task.

In this paper, based on the learned cell representations, we propose a naviga-
tion model that performs forward look-ahead planning and predicts a sequence
of neural activities encoding intermediate waypoints from a starting position
to a goal position, where the spatial positional state and directional state are
represented by the learned place and HD cell representations, respectively. Fur-
thermore, inspired by the biological finding that place cells are able to generate
future sequences encoding spatial trajectories towards remembered goals, which
demonstrates their predictive role in navigation [7], we propose a model of their
functional role in directing spatial behaviors. Here, we mainly introduce the
look-ahead planning whose architecture is shown in Fig. 1. The front part (vi-
sual processing part) consists of two parallel image-processing channels with a
different network for the emergence of place and HD cells, respectively. For the
unsupervised training and network parameters please refer to our previous work
[6]. The latter (route planning part) is a world model that supports the imagi-
nary planning in goal-directed navigation, where the world state is represented
by the ensemble activity of place and HD cells.

However such model-based forward planning suffers from significant accu-
mulation errors when dealing with long-range predictions. Furthermore, it takes
into account only the place cell representations of the target, irrespective of spe-
cific visual properties of a target. In many cases, this planning can only lead the
robot to the neighboring areas of a target, instead of to the precise target posi-
tion. To solve this problem, we propose a second planning strategy that starts to
perform after the look-ahead planning. Its aim is to recognize the target based
on vision and to move directly towards it after recognizing it.

2 Hybrid Planning Strategy

Based on information learned from vision, the proposed hybrid planning strategy
uses two different coordinate systems. The first one is based on space representa-
tions which are obtained in an unsupervised way. The second one is based directly
on visual representations of the goal. The concept of switching between different
planning strategies during navigation can be found in similar work [8][9].

2.1 Model-based Look-ahead Planning

For look-ahead planning, we first train a predictive world model network which
predicts the subsequent state given the current state and action. The continuous
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Fig.1: An overview of the system architecture. The immediate response of the
trained place or HD cell network to an image resembles the firing activity of place
and HD cells at a certain position or to a certain direction where the image is
captured. The world model trained based on the learned cell representations is
used to support look-ahead planning.

spatial state is represented by the ensemble activity of place and HD cells and the
continuous action determines the change of moving direction during a transition,
assuming a forward movement of constant speed. The world model is represented
by a multi-layer perceptron (MLP) with 81 inputs (30 place cells + 50 HD cells
+ 1 rotation angle) and 80 outputs (30 place cells + 50 HD cells).

The planning process is based on the recursive use of the fully trained world
model which generates a sequence of neural activations encoding the spatial
trajectory from an initial location to a given target location (represented in the
same place- and HD space), together with corresponding action commands [10].
To generate an optimal route, the planner first constructs a multi-step forward
look-ahead probe by sequentially simulating the execution of each command
in a given action sequence on a world model chain, as shown in Fig. 2. Then it
optimizes the actions recursively in the direction of the desired goal location. The
planning trajectory is optimized by modifying the actions via gradient descent to
minimize the distance to the goal location. With this approach, routes towards a
desired goal are imaginatively explored prior to execution by activating the place
cell activities, while corresponding moving directions along the route are encoded
by HD cell activities. For each optimization iteration, the action is updated as
follows:

K

1
, where Epjqpn = Z 5(Szoal B Sgred)g 1)

a-Eplan
da(t)

The state vector S consists of an ensemble firing activity of place and HD
cells (K in total), n is a constant learning rate. The training objective is to
optimize the action sequence a(t) such that the predicted ending state SP™*? is
close to the goal state S9°* which is calculated by the SFA network given the
image taken at the target position.

Aa(t) = —n
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Fig. 2: An overview of the planning architecture. The world model which has been
trained based on the learned cell representations is used to support look-ahead
planning. Left (inset), the MLP used for one-step prediction. Right, multi-step
prediction in the planning phase with feedback of the prediction error.

Note that planning assumes a predefined prediction depth according to the
distance to a goal location, while prior information about the optimal depth is
not always available. To overcome this assumption of the existing model [10],
we propose an adaptive-depth approach where the planning starts with a 1-step
prediction and incrementally increases the depth until adding one more predic-
tion step would let the ending position of the current plan go beyond the goal
location. During depth increase, the previous plan naturally provides a good pro-
posal for the initialization of the next plan whose prediction increases in depth.
Since the previous plan is already optimized but fails due to its small prediction
depth, this enables the planner to find the best prediction depth towards a goal
without any prior information to efficiently optimize the trajectory.

2.2 Vision-directed Reaching based on Target Recognition

While the look-ahead planning can approximately navigate the robot towards the
target position, the robot will either overstep or stop short of the target by about
one step size and will rarely stop precisely on the target. To solve this problem, we
adopt a second planning strategy that is based on object/scene recognition. The
goal-directed planning will be activated after the robot has executed the plans
optimized by the look-ahead planning, in which case the robot is supposed to be
close to the target and will be able to see the target. Since a target always refers
to particular objects (like chair, computer...) or specific scenes (like kitchen,
corridor...), the robot can recognize the target. After perceiving the target, the
robot will adjust its head direction to keep the target in the center of its view
and move towards it.
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3 Experiments and Results

3.1 Simulation Experiment for Look-ahead Planning

To test the look-ahead planning, we first used a simulated robot moving in
a RatLab virtual-reality environment which also generated the visual data for
training place- and HD cell networks [11]. RatLab is designed to simulate a
virtual rat doing random explorations and allows to modify the environmental
parameters and movement patterns according to the user’s purposes.

We first trained place- and HD cell networks by learning from the visual input
with SFA, where the images generated during turning movements are used to
train the place cell network, while the HD cell network is mainly trained using
images from forwarding movements [6]. We trained 30 place cells and 50 HD cells
whose ensemble activity encodes the spatial position and direction, respectively.
Training results are partly shown in Fig. 3.
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Fig.3: Firing patterns of learned place and HD cells to different positions or
directions. (a) Firing patterns of 9 representative place cells. (b) Polar plots
showing the firing patterns of 9 representative HD cells.

For the planning result, Fig. 4 (a) and (b) show separately plans with a
fixed depth of 10 and adaptive-depth plans, where the planning in the place cell
space is mapped to the 2D space through finding the position that yields the
most similar firing pattern. The prediction depth of 10 for Fig. 4 (a) is obtained
empirically and the initial route 0 is gradually optimized towards the desired
goal location. The given example shows plans with a quite good initialization,
while if given a starting route 0 that extends into a very different direction from
the desired one, the planning may not be successful. This is because a long
prediction makes the planning optimization based on back-propagating through
a long chain of world models very difficult. Due to a vanishing gradient, initial
segments receive too little correction. While the adaptive-depth planning could
start with a bad initialization, as route 0 shown in Fig. 4 (b), the planning
starts with a 1-step prediction and is optimized immediately to a better direction
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through the world model chain which currently contains only one model step.
This optimized plan then works as a good basis for initializing the next plan
with one step more. This explains why the initial part of each route in Fig. 4
(b) clusters in a narrow area. The planning depth increases incrementally until
finding an appropriate plan (route 8) to the goal location.

To evaluate the look-ahead planning performance over the global area, we
fixed the starting position and uniformly sampled 120 positions from the envi-
ronment as the target. As shown in Fig. 5, the planning performance deteriorates
as the distance between the target and the starting position increases. Especially
when the target lies in the areas behind the second obstacle, which is far away,
planning becomes very difficult and may fail. This might be due to the accumu-
lation error in the long world model chain and also the optimization based on
backpropagation is difficult for a long-step planning.

# Target Position

\ %

|

-
—————a—

Attt
—— <

Starting Position Starting Position

(a) (b)

Fig.4: The proposed look-ahead trajectories with (a) a fixed depth of 10 steps
and (b) an adaptive depth. The solid dots represent the intermediate locations
from the starting position to the target position (red star). The dashed line
(route 9) represents a route that exceeds the goal. Planning is performed in
place- and HD cell representation space and the trajectory based on actions of
the plan is shown in x, y- space for visualisation.

3.2 Real-world Experiment for Target Object Approaching

As a second step in our hybrid model, we test the vision-based target approaching
in a real-world environment with a Turtlebot3 robot in a simple goal reaching
task. The robot is placed at a position where the target is in the range of its vision
(which refers to the state after executing the look-ahead planning) and its goal is
to find the target object and move close to it. For detecting and recognizing the
target, we used the YOLO network which is fast and can accurately recognize,
classify and localize objects [12]. If the robot cannot see the target object at
the initial state, it will rotate locally with a constant speed until perceiving
and recognizing the object with a certain probability. While trying to keep the
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Fig.5: (a) The prediction error of the world model increases with the number of
the planning steps. (b) The planning error over the whole environment, where
the starting position is fixed (the black dot) and the target is sampled uniformly
from the rectangular environment which has a size of 14 x 10 units and 120
positions are sampled from it. The error value is represented by the color.

target object in the center of the view, the robot moves directly towards it until
reaching the threshold distance to the target (Fig. 6).

Fig. 6: Test of the object recognition and target approaching. The robot starts
from a neighboring area and needs to reach the target orange. Left: The robot
starts without the target in the current view (shown in the red box) and starts
rotating. Middle: The robot perceives and recognizes the target and starts mov-
ing towards it. Right: The robot reaches the orange and stops just next to it.

4 Conclusion and Future Work

We have proposed a navigation system that relies on a hybrid navigation strategy
in order to precisely reach a target location, which consists of two planning
strategies that work on different distance scales but both rely on vision. The
first one is look-ahead planning that works on a global coordinate system and
proposes a spatial trajectory close to the desired goal location. The spatial state
is represented by the ensemble activity of place and HD cells, which are modeled



8 Xiaomao Zhou, Cornelius Weber, Chandrakant Bothe and Stefan Wermter

by learning directly from visual input based on an unsupervised SFA learning
algorithm. The planning network allows looking into the future based on a chain
of world model predictions and adaptively proposes optimized prediction steps
to the goal location. The second part is a target approaching strategy working
on a local scale, which enables object recognition and goal-directed reaching.
Through combining these two complementary strategies, the robot can move
from a random position to a target position with a high accuracy using just its
vision system. As future work, we will extend the simulated scenario to a physical
world where place and HD cells are modeled on a real robot using its vision sensor
and the planning is validated in a challenging dynamic environment.
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